

SCM-03:Land Surface Albedo from geostationary satellites WebEx Meeting: 10/11/2014

A. Lattanzio, J. Matthews, M. Takahashi, R. Roebeling, K. Knapp, A. Okuyama

SCM-03: the project team

EUMETSAT (Darmstadt, Germany)

- Alessio Lattanzio (project coordinator)
- Rob Roebeling

NOAA's NCDC (Asheville, NC, US)

- Jessica Matthews
- 0 (
- \bigcirc

Visiting scientist in EUMETSAT One week in October 2014

Ken Knapp

JMA (Tokyo, Japan)

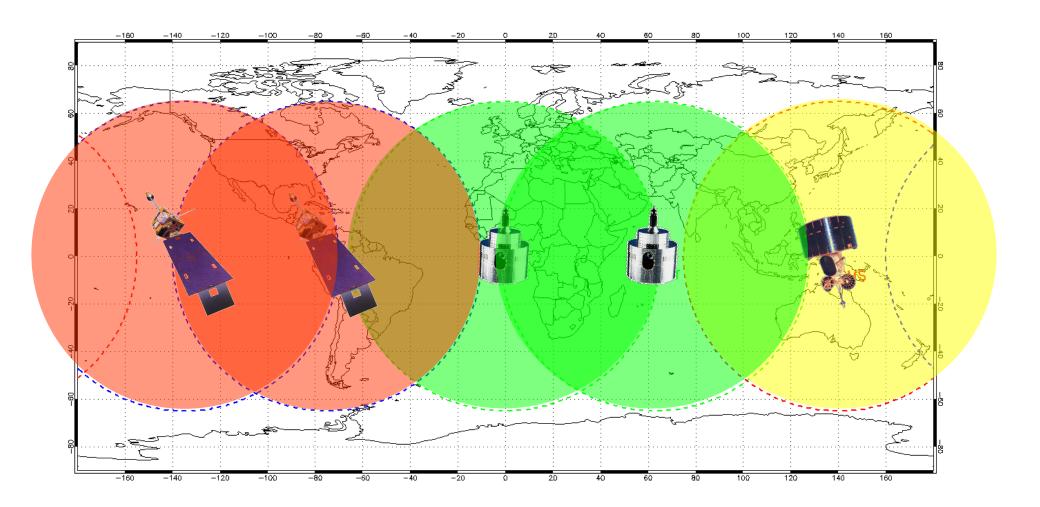
- Masaya Takahashi o
- \sim

Arata Okuyama

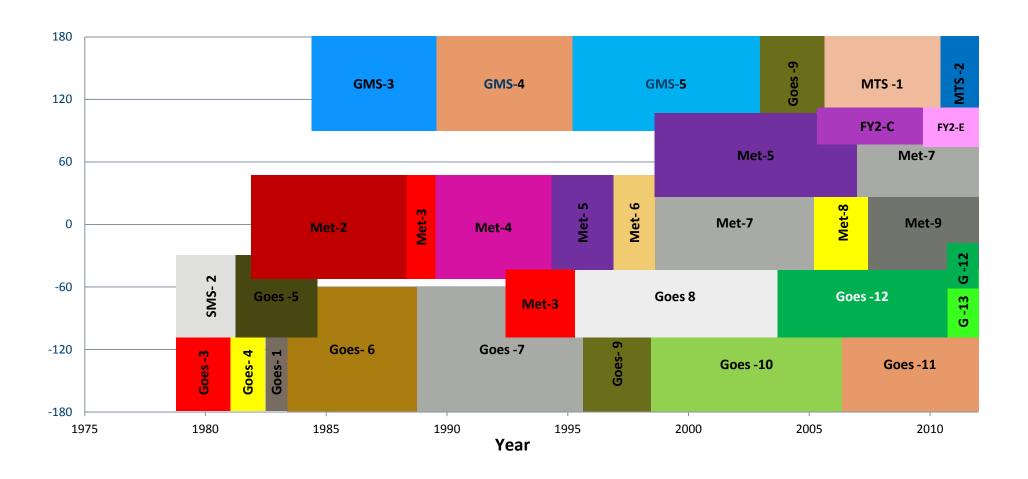
Visiting scientist in EUMETSAT from March 2014 to March 2015

CM-SAF (Offenbach, Germany)

• Reto Stoeckli

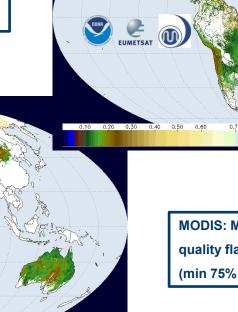


The EUMETSAT Network of Satellite Application Facilities



GEO Ring – Spatial Coverage

GEO Ring – Temporal Coverage


GEO Ring – Proof of Concept

Black sky albedo (0.3-3.0 µm)

Grid: 0.25 deg

Period: 1-10 of May 2001

Satellites: GMS-5, MET-5, MET-7, GOES-8 and GOES-10

MODIS: MCD43C3 0.05 deg

quality flag 0,1

(min 75% full inversion retrieval)

Project Plan: 2014-2018

Tas	k	Year	Actors
_	Updates to retrieval scheme including inclusion of common cloud mask approach, utilization of common method of inter-calibration, e.g., DCC method, implementation of common NWP data, implementation of other product output changes such as temporal resolution and format;	2014	EUM
-	Adaptation of retrieval scheme to the SEVIRI and other instruments;		EUM
-	Set up of validation procedures for Level-2 product.		EUM, JMA, NOAA
-	Technical assessment of the improved retrieval scheme;	2015	EUM
_	Implementation of updated retrieval scheme at all three agencies;		EUM, JMA, NOAA
-	Processing of data with existing validation counterpart;		EUM, JMA, NOAA
_	Validation of test products.		EUM, JMA, NOAA
-	Adaptation and re-implementation of algorithm following validation exercise;	2016	EUM
-	Processing of Level-2 data product for GEO tapestry;		EUM, JMA, NOAA
_	Establish user documentation and prepare for public distribution;		EUM, JMA, NOAA
_	Development of Level-3 product inclusive of user consultation.		EUM, NOAA
_	Produce and validate Level-3 product and redistribute to partners;	2017	EUM
_	Perform user driven studies on usage of the product to increase utilization;		EUM , JMA, NOAA
-	Arrange distribution of L2 and L3 products from European, Japanese and US sites.		EUM, JMA, NOAA
_	Update common calibration with results from SCOPE-CM inter-calibration project and rerun full data record;	2018	EUM, JMA, NOAA
_	Study product improvements with respect to utilization aspects.		EUM, JMA, NOAA

Project Plan: 2014

Task	Sub-Tasks	Period	Actors
Change of Level 2 product specifications	 Generation of a daily product instead of a 10 days composite NetCDF4 format, Climate Forecast standard compliant: full definition and implementation of data and metadata 	Q1	NCDC (EUM)
Residual Cloud Removal	 Investigate different approaches for cloud detection and removal (usage of the IR channel, seasonal variation, surface type, etc.) that could be included in the GSA retrieval scheme. Investigate available cloud mask products at the proper spatial and temporal resolution for all GEO platforms involved. 	Q1-Q3	EUM, JMA, NOAA
Inter-calibration	• Apply common methods for inter-calibration of the VIS channel. Existing GSICS methodology such as Deep Convective Clouds will be examined to allow progress with the production of an albedo time series. At a later stage, results from the SCOPE-CM project on intersatellite calibration will be used for further improvements.	Q1-Q3	EUM, JMA, NOAA
NWP Data	Establish a common set of NWP data	Q2	EUM, JMA, NOAA
Inclusion of other GEO instruments	 Investigate available options for best usage of the SEVIRI instrument in the current retrieval scheme Investigate potential inclusion of further instruments. 	Q3-Q4	EUM EUM, JMA, NOAA
Implementation of changes to the GSA software	 Implement potential changes to the input image data ingestion due to new methods for residual cloud removal, inter-calibration and new instruments. Develop software changes as needed. 	Q4	EUM EUM, JMA, NOAA
Validation	• Start development of a common protocol for evaluation of the resulting time series (see for instance Fell et al., 2012), encompassing: methods, validation datasets, software.	Q4	EUM, JMA, NOAA
Reporting and Planning	Report to SEP, establish web content and create work plan for 2015.	Q1,Q3 Q4	EUM, JMA, NOAA

Project Plan: tasks for 2014

Generation of daily products (Level 2): NCDC

Information from the daily inversion are already available. They only need to be stored into an output file

NetCDF4 Output format CF conventions (Level 2): NCDC

a prototype from Native to NetCDF4 has been already developed (definition of common metadata ongoing).

Cloud Mask (Level 2): EUM

Cooperation with the CMSAF for a Cloud Mask dataset for MFG and applicable to other GEO (GOES, GMS).

Investigate other methods (see following slides)

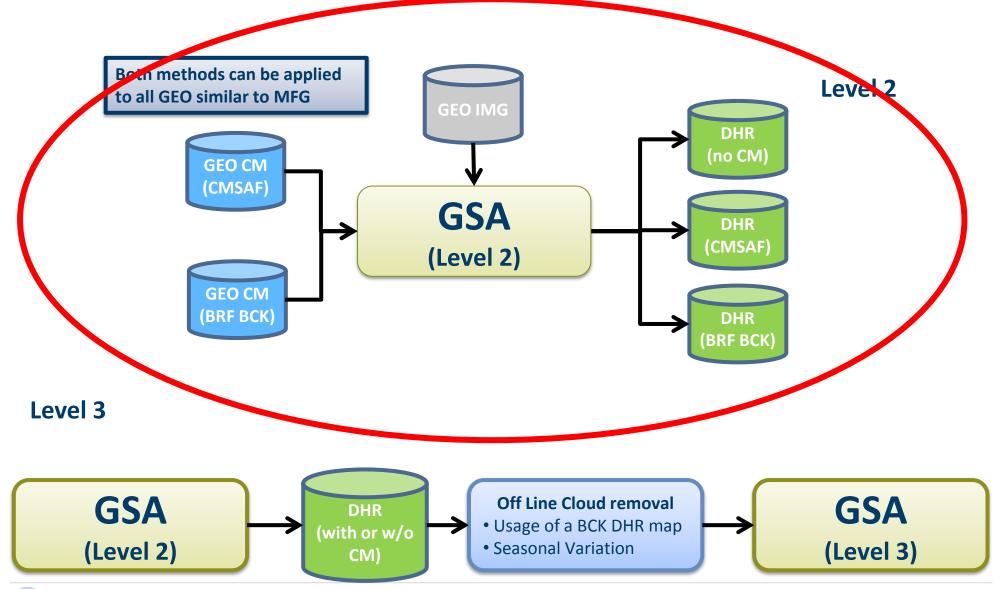
Cloud Removal (Level2 -> Level3): EUM

Currently investigating post-processing cloud removal strategies (background DHR map, seasonal variation).

Inter-calibration (Level 2): EUM/NCDC/JMA

Cooperation with GSICS and SCM06 IOGEO project

NWP Data: EUM/NCDC/JMA


Download of the same NWP (TCWV, TCO3) data from ECMWF for homogenization of input data

Validation scheme

- Validation scheme discussed during visit from J. Matthews. Following ALBEDOVAL as template.

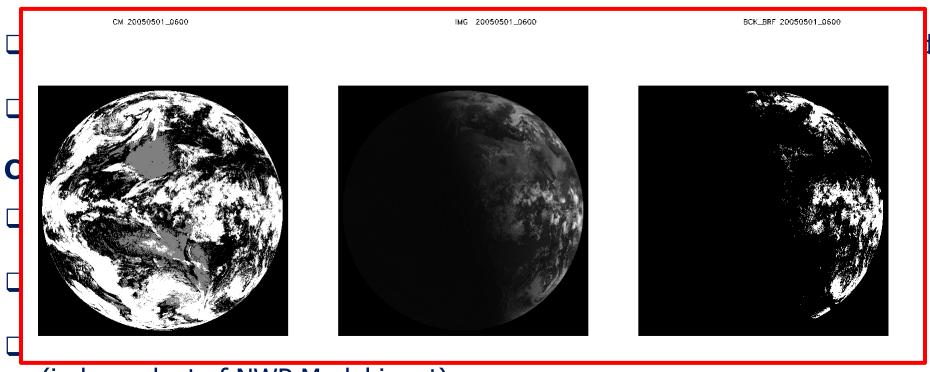
Cloud Removal for Level 2 and pre-Level 3

Cloud detection: Pre-Level 2 1/5

Background BRF Cloud Mask

- □ BRF Background map from all available MVIRI VIS images (one/month)
- ☐ Usage of a simple threshold (depending on SZA) method for detecting cloud
- ☐ Enhancement: include IR information

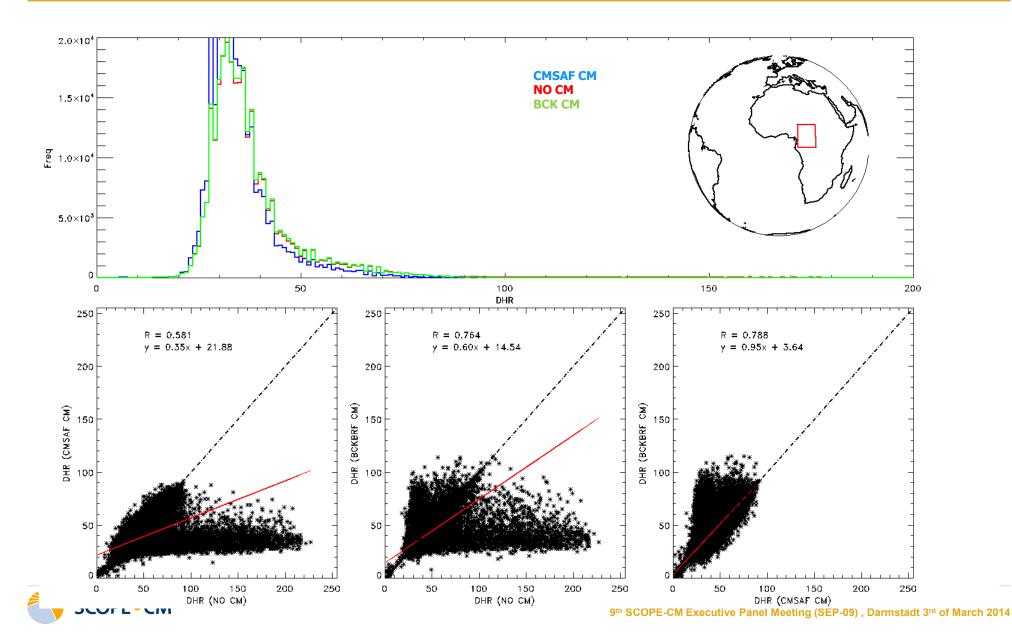
CM SAF 2 Channel Meteosat Climatological Cloud Mask


- ☐ Utilize Inter-Calibrated FCDR's (GSICS)
- Additive continuous scores instead of binary decision tree
- □ Generate own reflectance and brightness temperature background fields (independent of NWP Model input)
- ☐ Exploit time resolution of geostationary platforms

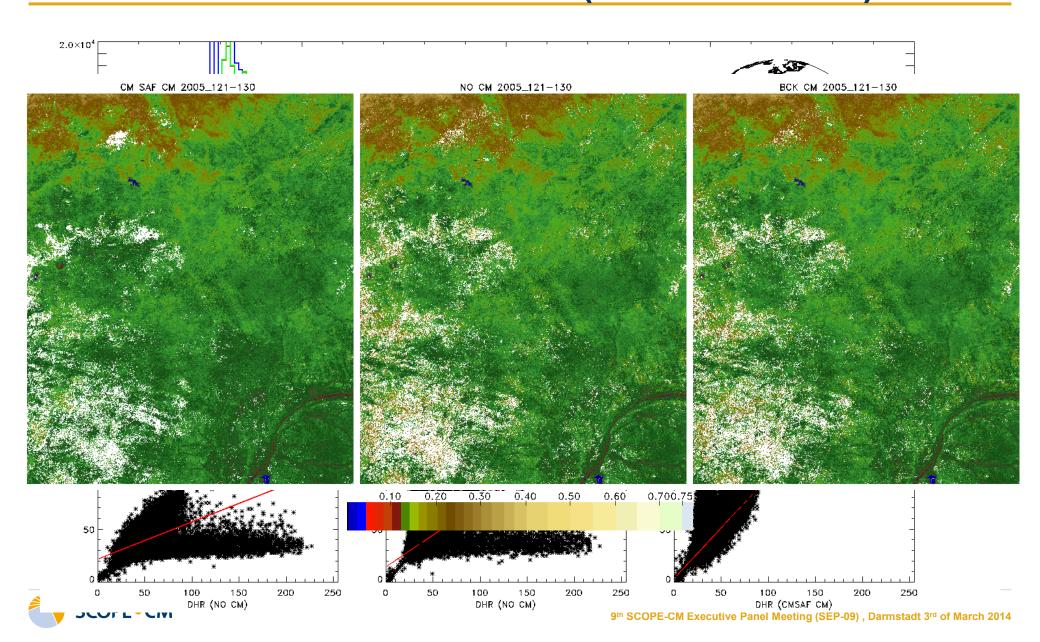
Cloud detection: Pre-Level 2 1/5

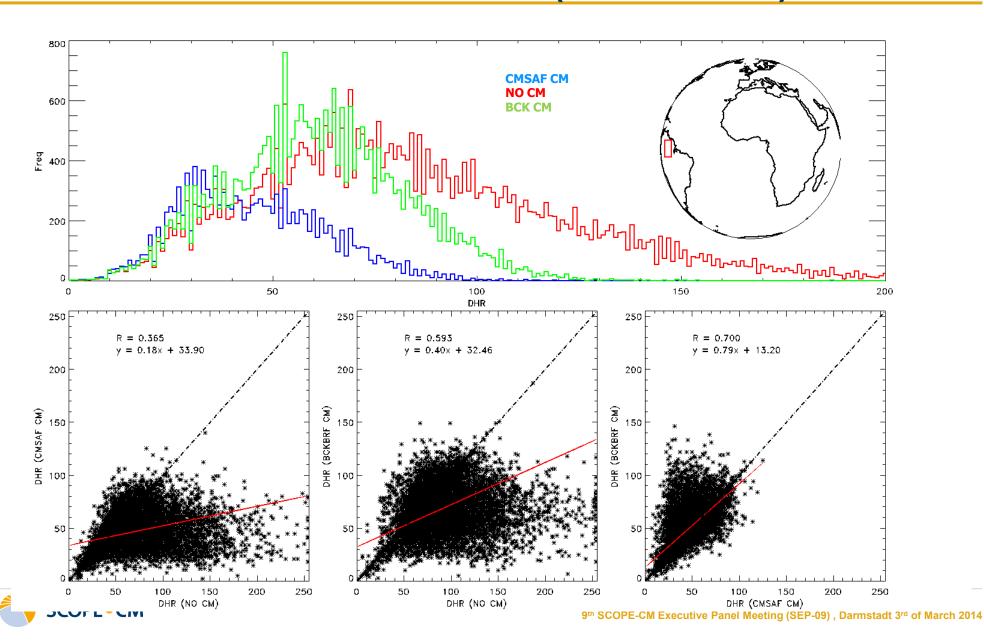
Background BRF Cloud Mask

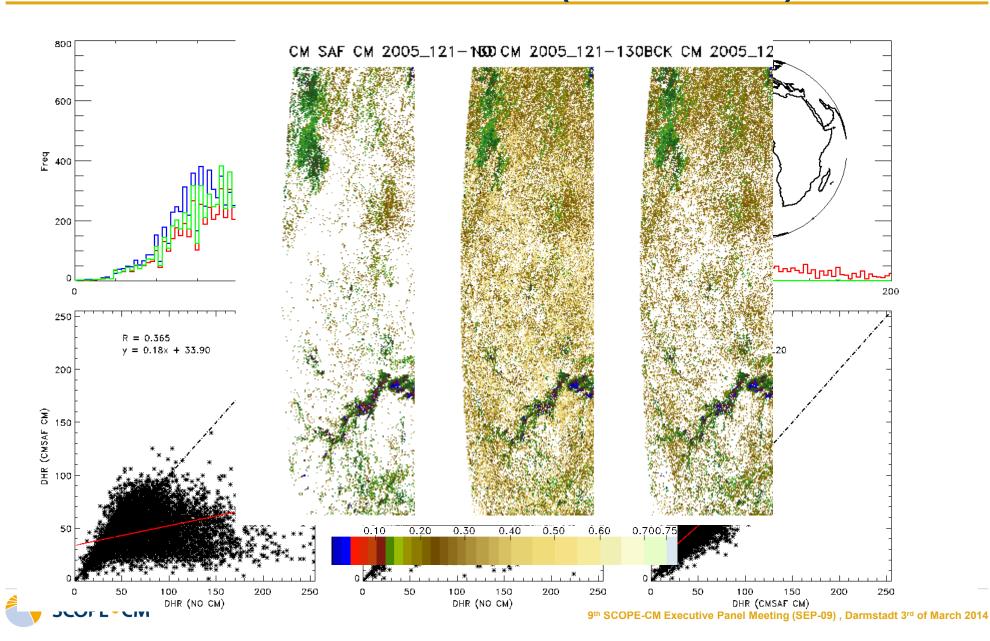
□ BRF Background map from all available MVIRI VIS images (one/month)



(independent of NWP Model input)


■ Exploit time resolution of geostationary platforms


Cloud detection: Pre-Level 2 (Forest - Africa)


Cloud detection: Pre-Level 2 (Forest - Africa)

Cloud detection: Pre-Level 2 (Forest - SA)

Cloud detection: Pre-Level 2 (Forest - SA)

Cloud detection: Pre-Level 2 (Summary)

	Retrieved Pixels			Above Threshold (~0.45)		
	NO CM	CMSAF CM	BCK CM	NO CM	CMSAF CM	BCK CM
Forest (Africa)	90%	+92%	+91%	1%	0%	0.01%
Desert	100%	100%	100%	47.9%	47.7%	47.9%
Forest (SA)	51%	17%	36%	15%	0.03%	1.2%

Project: External interfaces

Dependencies (input to SCM-03)				
Item	Actor	Task		
Residual Cloud Removal	CMSAF (potential new member of SCM03)	 Provide a cloud mask (or CM algorithm) for MFG Cooperate for extending the method to other GEO (GOES, GMS) 		
Inter-calibration	GSICS/ SCOPE-CM	 Application to DCC method for MFG,GOES and GMS (pre MODIS era) 		

Links (output from SCM-03)				
BRF	QA4ECV	• EUM to provide Bi-directional Reflectance Factor (BRF) with retrieval uncertainties from MFG.		

Actions

Pinty, B., A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson and Y. Govaerts (2005) 'Coupling Diffuse Sky Radiation and Surface Albedo', Journal of the Atmospheric Sciences, 62, 2580-2591.

Action Number	Actionee	Action		
ACTION-SEP-09-01	All	Assess product maturity		
ACTION-SEP-09-02	Secretariat	To collect and generate an interplant atrix between projects. To generate an overall dependency diagram between SCOPE-CM and other structures, CEOS, CGMS VC, SAFs, CCI)		
ACTION-SEP-09-03	All	To contribute to the ECV invent base		
ACTION-SEP-09-04	All	To federate dataset generation tress the release mode		
ACTION-SEP-09-05	Secretariat	To update website		
ACTION-SEP-09-05	All	Inquire from SCM projects on ans to use THREDDS.		
		Action spec ject		
ACTION-SEP-09-06	SCM-01	Interaction with SCM-08		
ACTION-SEP-09-07	SCM-02/SCM-05	To collaborate. SCM-02 to give its requirements to SCM-05		
ACTION-SEP-09-08	SCM-03	To investigate the possibility to include the direct/diffuse fraction to the downward flux density in the albedo product.		
ACTION-SEP-09-09	SCM-05	To organise a workshop with GSICS		
ACTION-SEP-09-10	SCM-06	Investigate how to put in place a to allow the project to feedback GSICS		
ACTION-SEP-09-11	SCM-07	To produce a flow-diagram to identify various contributions to the project and to point out input/outputs		
ACTION-SEP-09-12	SCM-08	To inform secretariat in case of lead's change		
ACTION-SEP-09-13	SCM-09	To provide an update on the project plan. To investigate the possibility of a 'global' product (LEO + GEO) interaction with SCM-05		

